by Jana Korte, Franziska Gaidzik, Naomi Larsen, Erik Schütz, Timo Damm, Fritz Wodarg, Jan-Bernd Hövener, Olav Jansen, Gábor Janiga, Philipp Berg, Mariya S. Pravdivtseva
Abstract:
Background The novel Contour Neurovascular System (Contour) has been reported to be efficient and safe for the treatment of intracranial, wide-necked bifurcation aneurysms. Flow in the aneurysm and posterior cerebral arteries (PCAs) after Contour deployment has not been analyzed in detail yet. However, this information is crucial for predicting aneurysm treatment outcomes.Methods Time-resolved three-dimensional velocity maps in 14 combinations of patient-based basilar tip aneurysm models with and without Contour devices (sizes between 5 and 14 mm) were analyzed using four-dimensionsal (4D) flow MRI and numerical/image-based flow simulations. A complex virtual processing pipeline was developed to mimic the experimental shape and position of the Contour together with the simulations.Results On average, the Contour significantly reduced intra-aneurysmal flow velocity by 67\% (mean w/ = 0.03m/s; mean w/o = 0.12m/s; p-value=0.002), and the time-averaged wall shear stress by more than 87\% (mean w/ = 0.17Pa; mean w/o = 1.35Pa; p-value=0.002), as observed by numerical simulations. Furthermore, a significant reduction in flow (P<0.01) was confirmed by the neck inflow rate, kinetic energy, and inflow concentration index after Contour deployment. Notably, device size has a stronger effect on reducing flow than device positioning. However, positioning affected flow in the PCAs, while being robust in effectively reducing flow.Conclusions This study showed the high efficacy of the Contour device in reducing flow within aneurysms regardless of the exact position. However, we observed an effect on the flow in PCAs, which needs to be investigated further.
Reference:
In vitro and in silico assessment of flow modulation after deploying the Contour Neurovascular System in intracranial aneurysm models (Jana Korte, Franziska Gaidzik, Naomi Larsen, Erik Schütz, Timo Damm, Fritz Wodarg, Jan-Bernd Hövener, Olav Jansen, Gábor Janiga, Philipp Berg, Mariya S. Pravdivtseva), In Journal of NeuroInterventional Surgery, 2023.
Bibtex Entry:
@article{korte_vitro_2023,
	title = {In vitro and in silico assessment of flow modulation after deploying the {Contour} {Neurovascular} {System} in intracranial aneurysm models},
	issn = {1759-8478},
	url = {https://jnis.bmj.com/content/early/2023/10/24/jnis-2023-020403},
	doi = {10.1136/jnis-2023-020403},
	abstract = {Background The novel Contour Neurovascular System (Contour) has been reported to be efficient and safe for the treatment of intracranial, wide-necked bifurcation aneurysms. Flow in the aneurysm and posterior cerebral arteries (PCAs) after Contour deployment has not been analyzed in detail yet. However, this information is crucial for predicting aneurysm treatment outcomes.Methods Time-resolved three-dimensional velocity maps in 14 combinations of patient-based basilar tip aneurysm models with and without Contour devices (sizes between 5 and 14 mm) were analyzed using four-dimensionsal (4D) flow MRI and numerical/image-based flow simulations. A complex virtual processing pipeline was developed to mimic the experimental shape and position of the Contour together with the simulations.Results On average, the Contour significantly reduced intra-aneurysmal flow velocity by 67\% (mean w/ = 0.03m/s; mean w/o = 0.12m/s; p-value=0.002), and the time-averaged wall shear stress by more than 87\% (mean w/ = 0.17Pa; mean w/o = 1.35Pa; p-value=0.002), as observed by numerical simulations. Furthermore, a significant reduction in flow (P\<0.01) was confirmed by the neck inflow rate, kinetic energy, and inflow concentration index after Contour deployment. Notably, device size has a stronger effect on reducing flow than device positioning. However, positioning affected flow in the PCAs, while being robust in effectively reducing flow.Conclusions This study showed the high efficacy of the Contour device in reducing flow within aneurysms regardless of the exact position. However, we observed an effect on the flow in PCAs, which needs to be investigated further.},
	journal = {Journal of NeuroInterventional Surgery},
	author = {Korte, Jana and Gaidzik, Franziska and Larsen, Naomi and Schütz, Erik and Damm, Timo and Wodarg, Fritz and Hövener, Jan-Bernd and Jansen, Olav and Janiga, Gábor and Berg, Philipp and Pravdivtseva, Mariya S.},
	year = {2023}
}